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ABSTRACT
A predictive three-phase hydrodynamic model for

slurry-bubble column reactors has been developed from the
point of view of kinetic theory of granular flow (Gidaspow,
1994a). The model is based on first principles method and can
provide a complete description of the flow field. To
experimentally validate the code, local gas holdups have been
measured at the National Energy Technology Laboratory
(NETL) by inserting a dual conductivity probe horizontally into
the reactor at various locations. Predicted gas holdups are in
reasonable agreement with the experimental results in the bulk
region of the reactor.

INTRODUCTION
Slurry-Bubble-Column Reactors (SBCRs) are the

preferred reactor type of synthesis gas conversion.  They are
flexible and may be tailored to produce high quality
transportation fuel and a variety of products.  Advantages of
SBCRs over conventional reactors such as fixed bed include
efficient heat transfer, high conversions, high olefin yields, use
of low H2/CO ratio synthesis gas, high flexibility. Despite these
advantages, the Fischer-Tropsch process involving the SBCR
has never been able to compete economically with conventional
petroleum-base fuels. Thus, it is essential to improve its
performance. Most of the studies have been concentrated on
the development and optimization of new catalysts and
improvement of known catalysts (Kitzelmann et al., 1977; Kolbel
and Tillmetz, 1976; Zein et al., 1978). The understanding of the
hydrodynamics in SBCR has received only little attention until
now (Zhou, 1993) though required for a reliable design and
scaleup of Fischer-Tropsch slurry reactors. Existing models
such as dispersion, two fluid models, though useful starting

points for scaleup, cannot produce an adequate picture of the
flow dynamics at industrially-relevant conditions of high
temperatures and pressures and in the presence of real reaction
fluids. Recent thorough reviews show that there exist no such
models (hydrodynamic and Fisher-Tropsch reaction kinetics) in
the open literature. The overall objective of our research is to
develop design models for slurry-bubble-column reactors and
gain an understanding of reacting fluid dynamics at high
temperatures and pressures.
In view of the complexity of such multiphase reactive models, a
hydrodynamic model is initially recommended. This paper
presents a predictive three-phase hydrodynamic model for
SBCRs. The model uses the conservation of mass, momentum,
and energy for each phase. The catalyst phase pressure due to
particle collision and its viscosity are derived from the kinetic
theory of granular flow and are expressed in terms of the
granular temperature. The latter is computed from a balance of
the random kinetic energy which is similar to the well-known

ε−k  model used in single phase flow and extended to
multiphase systems by Ahmadi and Ma (1990) and Cao and
Ahmadi (1995). Predicted gas holdups in the bulk region
reasonably agree with the data.

NOMENCLATURE

CD drag coefficient
CPg specific heat of gas
CPp specific heat of phase p
dp diameter of particle or droplet
ep restitution coefficient of phase p



Gg forces per unit mass on gas phase
Gp forces per unit mass on phase p
Hg enthalpy of gas phase
Hp enthalpy of phase p
hvp gas-phase p heat transfer coefficient
g gravity acceleration
g0p radial distribution function of phase p
[I] unit tensor
kg thermal conductivity of gas
kp thermal conductivity of phase p
kg

0 mean thermal conductivity of gas
kp

0 mean thermal conductivity of phase p
kp

* effective thermal conductivity of phase p
Pr Prandtl number
R universal gas constant
Rep Reynolds number based on d p

T thermal temperature
Tg gas thermal temperature
Tp thermal temperature of phase p
Tg

0 reference gas temperature
Tp

0 reference temperature of phase p
u velocity in the x direction
v velocity in the y direction
z compressibility factor

Greek letters:

β
pl

frictional coefficient between phase p and l

γ
p

collisional energy dissipation

εk
                      volume fraction of phase k

Θ                        granular temperature

κ p
                     conductivity of fluctuating energy

µ
p

                   viscosity of phase p

ξ
p

                     bulk viscosity

ρ
p

                    density of phase p

τ g
                     gas-phase shear stress

τ p
                     shear stress of phase p

Ψp
                  sphericity of particle or droplet

Subscripts
g, l, s gas, liquid, solid respectively
k gas, liquid, solid (g,l,s)
p solid or liquid phase (l,s)

Superscript

T transpose

Hydrodynamics model for three-phase flow
For transient, three-phase flow the general mass

conservation equations and separate phase momentum
equations are written as follows in conservation law form for
hydrodynamic model B (Bouillard et al. [1989], Gidaspow,
[1994b], and Gamwo et al., [1995, 1999]):
Conservation equations :
Continuity equation for gas, liquid and solid [k=g,l,s]:
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Conservation of phase-volume fractions:
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Gas-phase momentum equation :

)3(
,

)gv-pv(gp
slp

g+gGgg=)gvgvgg(+)gvgg(
t

β

τρερερε

∑
=

+

⋅∇⋅∇∂
∂










where β
gp

are the drag coefficients between the gas and

the dispersed phases (l,s). τ g
is the gas-phase stress tensor.

Liquid-phase momentum equation :
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Solid- phase momentum equation :
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Gas-phase energy equation in terms of enthalpy H is:
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where hvp is the heat transfer coefficient and q
g

is the gas-

phase conductive heat transfer described by Fourier’s law

gTgkq g ∇=

Dispersed-phases energy equations (p=l,s):
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Fluctuation energy equation for the particles:

Following the approach of Ahmadi and Ma (1990) and Cao and
Ahmadi (1995), we assume that the fluctuating velocity of
particles is the same as that of the fluid. Hence only the

equation for the granular temperature Θs
 of the particles is

needed.
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Where κ s
is the dense-phase diffuse coefficient for granular

temperature, and γ
s

 is the dissipation due to collision.

Constitutive Equations:
The most important part of the kinetic theory needed in

the hydrodynamic model is the computation of the particulate
viscosity. The expression we use for the viscosity was verified
to give the viscosity measured by classical methods for gas-
solid (Gidaspow and Huilin, 1996; Buyevich and Cody, 1998)
and for liquid-solid (Gidaspow and Huilin, 1998b)  fluidization.
The major difference in kinetic theory between fluidization of
particles in air and in water is that the particles do not contact
each other during the collision. In liquids there exists a film
between the particles that gives rise to a lubrification force.
Thus in applying the kinetic theory to liquids one must take the
restitution coefficient to be unity and lump all the dissipation
into an effective drag in the fluctuating energy equation.

Interphase drag coefficients: (p=l,s)
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where the drag coeficient CD is given by

-Liquid-solid drag coefficient
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Shear stresses:
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Particulate viscosity:
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Bulk viscosity:
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Equation of state for particles (p=s)
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Equation of state for gas:

g

gg
g zRT

PM
=ρ  where gM is the average gas molecular weight

and z is the compressibility factor

Collisional energy dissipation:
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Dense-phase conductivity:

Where the dilute phase conductivity is
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Gas thermal conductivity:
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Dispersed-phase heat transfer:
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 External forces acting on each phase:
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Gas-solid heat transfer:
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Numerical Scheme
The governing equations along with the constitutive

equations are solved for

PTTTvvv gslgslgslg
and,,,,,,,,, εεε using the

Implicit Continuous Eulerian (ICE) method (Rivard and Torrey,
1977; Jayaswal, 1991, Gamwo et al., 1999) with appropriate initial
and boundary conditions.  The computations are carried out
using a mesh of finite-difference cells fixed in two-dimensional
space (Eulerian mesh).  The scalar variables are located at the
cell center and the vector variables at the cell boundaries. The
momentum equation is solved using staggered mesh, where as
for continuity equation a donor cell method was used, (Gamwo,
et al., 1999).

The partial differential equations are well posed (Gamwo, et al.,
1995).  The time step is chosen to satisfy the Courant stability
criterion (Courant, et al., 1952).  The numerical stability of the
equations can be obtained using the Von Neumann stability
analysis, as illustrated by Lyczkowski, et al. (1978) and
Prosperetti (1982).
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Computational results
Nonuniform finite difference grids were used.  Axial

symmetry was assumed. The reactor was finite differenced into
14x94 computational cells.  Cells sizes in the axial direction vary
from 0.2 to 12.70 cm and from 0. 1 to 0.4 cm in the radial
direction.  Numerical computations were carried out for 1.8 sec.
with a time increment of 2x 10-6 sec.

To show the wide range of the model applicability, profiles of
gas/liquid/solid holdups were computed at both laboratory
(ambient temperature and pressure) and industrially-relevant
(high temperature and pressure) conditions.  Figures 1 and 2
show the three phases holdup profiles at different reactor
heights at ambient and industrially-relevant conditions
respectively.

Both figures clearly demonstrate that the solids concentration at
the bottom of the reactor is very high and decreases sharply
with reactor height.  The solids holdup at the top of the reactor
is nearly zero implying the absence of catalyst in that region.
The liquid holdup at the top of the reactor is high, due to the

relative lack of solids.  Overall the solids holdup decreases with
height, the liquid holdup increases with height and the gas
holdup remains fairly constant throughout the reactor

Experimental gas holdups
The acquisition and analysis of experimental data are

not repeated here as they are summarized by Soong et al.,
(1997). Experiments were conducted in a l0.16 cm I.D. x 243.84 cm
reactor operating in the batch-mode with stationary Drakeol-10
oil/90 µm glass beads and a continuous flow of nitrogen gas.
The column has 12 different axial locations for data collection.
The local gas holdups were measured at NETL by inserting a
dual conductivity probe (hot wire) horizontally into the column
at any of the 12 positions and moving it to the desired radial
position.  The holdups were measured at three locations above
the gas distributor in the bubble column.  The experiments were
conducted at both laboratory and industrially-relevant
conditions at superficial gas velocity of 7.05 cm/s with Drakeol-
10 oil as the liquid phase, nitrogen as the gas phase and 90 µm
glass beads as the solid phase medium.

Comparison of model results with experiments
Holdups measurement is a sensitive test of the theory,

since it is not prescribed at any of the boundaries in the
simulation of the slurry-bubble column reactor.  Hence,
measured gas holdups were compared with simulated results
under conditions shown in Table 1 that closely resemble the
experimental conditions.

Table 1. Simulation Conditions

Fluids Drakeol-10 oil/Nitrogen
Temperatures, 0C 20 and 250
Pressures, MPa 0.1 and 1.36
Superficial gas velocity, cm/s 7.05
Particles Glass beads
Particle mean diameter, cm 0.009
Particle density, g/cm3 2.362
Particle sphericity 1.0

Figure 3 shows a comparison of the experimentally determined
gas holdup for slurry of 90 µm glass beads/Drakeol- 10/nitrogen
to computations using our three-phase model.



Both the experiment and the theory show low and nearly-
constant gas holdup in the bottom and middle regions of the
reactor, then the gas holdup rises sharply in the free-board
region.  The agreement between the experiment and the model is
reasonable, except in the disengagement zone.  At this location,
the experiment showed a lower gas holdup probably caused by
asymmetric motion of the bubble. This larger difference may be
due to the symmetry assumption and to the absence of the third
dimension.

Conclusions

A three-phase reactor model for describing the hydrodynamics
in slurry-bubble column has been developed. Computed gas
holdups at atmospheric pressure and temperature agree well
with experimental data except in the disengagement region.  This
discrepancy is likely due to the symmetry assumption which is
not observed experimentally and to the third dimension. To
correct this deficiency we are in the process of developing a
three-dimensional code with no symmetry assumption.
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